Tài liệu hay về Laplace và hàm truyền đạt - Thuviencokhi.com - Thư viện tài liệu, video, kiến thức, tiêu chuẩn cơ khí
BACK TO TOP

Thông Báo


Hiện nay, trang Box.com đang giới hạn băng thông nên nhiều bạn không tải được tài liệu trên web. Vì vậy, chúng tôi làm video hướng dẫn các bạn tải tài liệu trên trang này. Các bạn bấm vào link này để xem hướng dẫn nhé !!!
Tài liệu hay về Laplace và hàm truyền đạt

Xét một ô tô điều khiển hành trình, là một thiết bị được thiết kế để duy trì ở tốc độ không đổi; tốc độ mong muốn hoặc đặt trước, được cung cấp bởi trình điều khiển. Hệ thống trong trường hợp này là chiếc xe. Đầu ra hệ thống là tốc độ, và các biến điều khiển là vị trí bộ điều tiết của động cơ, ảnh hưởng đến mô-men xoắn của động cơ ở đầu ra.

Cách sơ khai nhất để thực hiện điều khiển hành trình chỉ đơn giản là giữ nguyên vị trí của bộ điều tiết ga của trình điều khiển. Tuy nhiên, trên địa hình miền núi, chiếc xe sẽ bị hãm lại khi leo dốc và được tăng tốc khi xuống dốc. Trong thực tế, bất kỳ tham số nào khác với những gì đã được giả định trong thời gian thiết kế sẽ trở thành một sai số tỷ lệ ở tốc độ đầu ra, bao gồm cả khối lượng chính xác của chiếc xe, độ cản của gió, và áp lực của lốp xe. Bộ điều khiển loại này được gọi là bộ điều khiển vòng hở vì không có kết nối trực tiếp nào giữa đầu ra của hệ thống (tốc độ xe) và các điều kiện thực tế gặp phải, do đó, hệ thống không và không thể bù lại được các lực không mong muốn.

Trong một hệ thống điều khiển vòng kín, một cảm biến giám sát đầu ra (tốc độ xe) và cung cấp dữ liệu đó về một máy tính để điều chỉnh một cách liên tục tín hiệu điều khiển đầu vào (điều tiết ga)khi cần thiết để giữ cho sai số điều khiển trong mức độ tối thiểu (đó là, để duy trì tốc độ mong muốn). tín hiệu phản hồi về hệ thống cho phép bộ điều khiển(máy tính bên trong xe) bù một cách linh động cho những thay đổi trong hệ thống, chẳng hạn như sự thay đổi độ dốc của mặt đất hoặc tốc độ gió. Một hệ thống điều khiển phản hồi lý tưởng loại bỏ tất cả những sai số, có tác dụng giảm thiểu tác động của bất kỳ lực nào có thể hoặc không thể phát sinh trong suốt quá trình làm việc và tạo ra một phản ứng trong hệ thống mà phù hợp hoàn hảo với mong muốn của người dùng. Trong thực tế, điều này không thể thực hiện được do sai số đo lường trong các cảm biến, độ trể trong các bộ điều khiển, và sự không hoàn hảo trong điều khiển đầu vào.

Mặc dù nhiều dạng của hệ thống điều khiển có từ thời cổ đại, nghiên cứu chính thức của lĩnh vực này bắt đầu với một phân tích động học của hệ điều tốc li tâm, được thực hiển bởi nhà vật lý James Clerk Maxwell vào năm 1868 với tựa đề On Governors(hệ điều tốc).[1] Tài liệu này miêu tả và phân tích hiện tượng "sự dao động", trong đó sự trễ pha trong hệ thống có thể dẫn đến trạng thái bù quá mức và không ổn định. Điều này tạo ra sự hấp dẫn trong đề tài này, trong những bạn học với Maxwell, Edward John Routh tổng quát hóa các kết quả của Maxwell cho lớp tổng quát trong các hệ tuyến tính.[2] Một cách độc lập, Adolf Hurwitz đã phân tích sự ổn định của hệ thống sử dụng phương trình vi phân vào năm 1877, kết quả là ta có được định lý Routh-Hurwitz.[3][4]

Một ứng dụng đáng chú ý của điều khiển động học là trong lĩnh vực điều khiển máy bay. Anh em nhà Wright đã lần đầu tiên thử nghiệm chuyến bay thành công vào ngày 17 tháng 12, năm 1903 và được đánh dấu bởi khả năng điều khiển máy bay của họ trong thời gian đáng kể (nhiều hơn so với khả năng sinh ra lực nâng từ cánh máy bay, đã được biết). Điều khiển của máy bay rất cần thiết cho sự an toàn của chuyến bay.

Vào Chiến tranh thế giới thứ II, lý thuyết điều khiển đã là một phần quan trọng của hệ thống kiểm soát hỏa lựchệ thống dẫn đường và điện tử học.Cuộc chạy đua không gian cũng phụ thuộc vào sự chính xác của việc điều khiển tàu không gian. Tuy nhiên, lý thuyết điều khiển cũng được sử dụng trong các lĩnh vực khác càng ngày càng nhiều như trong kinh tế học.

Để tránh các vấn đề của bộ điều khiển vòng hở, lý thuyết điều khiển đề xuất khái niệm phản hồi. Một bộ điều khiển vòng kín sử dụng tín hiệu phản hồi để điều khiển trạng thái hoặc đầu ra của một hệ thống động lực. Tên của nó đến từ đường đi của thông tin trong hệ thống: quá trình đầu vào (ví dụ Vôn dùng trong một động cơ điện) theo hiệu ứng ở chu trình đầu ra (ví dụ: tốc độ hoặc momen của động cơ), đo được với cảm biến và được xử lý bởi bộ điều khiển; kết quả (tín hiệu điều khiển) được sử dụng làm đầu vào cho chu trình xử lý, đóng kín vòng lặp.

Các bộ điều khiển vòng kín có những ưu điểm so với các bộ điều khiển vòng hở là:

  • Loại trừ nhiễu (như ma sát không đo được ở động cơ)
  • Đảm bảo được thực hiện ngay cả với mô hình không chắc chắn, khi cấu trúc mô hình không phù hợp hoàn hảo với quá trình thực và các thông số mô hình không chính xác
  • Các chu trình không ổn định có thể ổn định hóa
  • Giảm độ nhạy cho các thông số biến đổi
  • Kết quả theo dõi đặt trước được cải thiện

Trong một vài hệ thống, điều khiển vòng kín và điều khiển vòng hở được sử dụng đồng thời. Trong những hệ thống như vậy, điều khiển vòng hở được nằm trong vòng tiến nhằm nâng cao kết quả theo dõi giá trị đặt trước.

Một cấu trúc điều khiển kín phổ biến là bộ điều khiển PID.

Đầu ra của hệ thống y(t) được hồi tiếp qua một cảm biến đo lường F để so sánh với giá trị đặt trước r(t). Bộ điều khiển C lấy sai số e (độ chênh lệch) giữa giá trị đặt và tín hiệu đầu ra để thay đổi đầu vào u cho hệ thống dưới điều khiển P. Điều này được thể hiện như trong hình vẽ. Loại này là điều khiển vòng kín hay còn gọi là điều khiển hồi tiếp.

Đây là một hệ điều khiển một đầu vào, một đầu ra(SISO) ; hệ thống MIMO (Nhiều đầu vào, nhiều đầu ra), với nhiều hơn một đầu vào/đầu ra thì phổ biến. Trong trường hợp này các biến được biểu diễn qua vectors thay vì các giá trị vô hướng đơn giản. Trong vài hệ thống tham số phân thán, các vector có thể là có có chiều vô hạn (các hàm đặc trưng).

Một vòng điều khiển phản hồi đơn

Nếu chúng ta giả thiết bộ điều khiển C, cơ cấu P, và cảm biến F là tuyến tính và bất biến theo thời gian (ví dụ: các yêu tố trong hàm truyền C(s)P(s), và F(s) của chúng không phụ thuộc vào thời gian), hệ thống trên có thể được phân tích sử dụng phép biến đổi Laplace vào các biến. Điều này đưa tới những quan hệ sau:

Y(s) = P(s) U(s)\,\!
U(s) = C(s) E(s)\,\!
E(s) = R(s) - F(s)Y(s).\,\!

Giải ra Y(s) theo R(s) được:

Y(s) = \left( \frac{P(s)C(s)}{1 + F(s)P(s)C(s)} \right) R(s) = H(s)R(s).

Biểu thức H(s) = \frac{P(s)C(s)}{1 + F(s)P(s)C(s)} được xem như hàm truyền vòng kín của hệ thống. Tử số là độ lợi ở phía trên (vòng hở) thu được từ r đến y,và mẫu số là 1 cộng với độ lợi xung quanh vòng hồi tiếp, được gọi là độ lợi vòng lặp. Nếu |P(s)C(s)| \gg 1, có nghĩa là nó có một tiêu chuẩn lớn với mỗi giá trị của s, và nếu |F(s)| \approx 0, thì Y(s) xấp xỉ bằng R(s). Do đó đã cài đặt giá trị đặt trước để điều khiển đầu ra.

Bộ điều khiển PID có lẽ là thiết kế điều khiển hồi tiếp được sử dụng nhiều nhất.PID là từ viết tắt của Proportional-Integral-Derivative (có nghĩa là tỉ lệ-tích phân-vi phân), đề cập đến 3 khâu hoạt động trên tín hiệu sai số để tạo ra một tín hiệu điều khiển. Nếu u(t) là tín hiệu điều khiển gửi tới hệ thống, y(t) là đầu ra đo được và r(t) là đầu ra mong muốn, và sai số theo dõi e(t)=r(t)- y(t), một bộ điều khiển PID có dạng tổng quát như sau:

u(t) = K_P e(t) + K_I \int e(t)\text{d}t + K_D \frac{\text{d}}{\text{d}t}e(t).

đặc tính động học của vòng kín mong muốn đạt được bằng cách điều chỉnh 3 thông số  K_P K_I và  K_D, thường lặp đi lặp lại bằng cách "điều chỉnh" và không cần có kiến thức cụ thể về một mô hình. Sự ổn định có thể thường được chắc chắn bằng cách chỉ sử dụng khâu tỉ lệ. Khâu tích phân cho phép loại bỏ một bậc nhiễu (thường là một đặc điểm đặc trưng trong điều khiển quá trình). Khâu vi phân được sử dụng để cung cấp sự giảm dần hoặc hình dạng của đáp ứng. Các bộ điều khiển PID là lớp thiết lập tốt nhất trong hệ thống điều khiển: tuy nhiên, chúng không thể được sử dụng trong nhiều trường hợp phức tạp hơn, đặc biệt nếu các hệ thống MIMO được xem xét.

Việc ứng dụng các kết quả của biến đồi Laplace trong phương trình bộ điều khiển PID được biến đổi

u(s) = K_P e(s) + K_I \frac{1}{s} e(s) + K_D s e(s)
u(s) = (K_P + K_I \frac{1}{s} + K_D s) e(s)

với hàm truyền của bộ điều khiển PID

C(s) = (K_P + K_I \frac{1}{s} + K_D s).
 
Thông tin chi tiết
Tên file:
Tài liệu hay về Laplace và hàm truyền đạt
Phiên bản:
N/A
Tác giả:
N/A
Website hỗ trợ:
N/A
Thuộc chủ đề:
Danh Mục » Ngành cơ điện tử » Kỹ thuật điều khiển tự động
Gửi lên:
12/08/2013 07:07
Cập nhật:
12/08/2013 07:07
Người gửi:
haihoang_boy
Thông tin bản quyền:
N/A
Dung lượng:
N/A
Đã xem:
1674
Đã tải về:
0
Đã thảo luận:
0
Tải về
Để tải về, bạn cần đăng nhập với tư cách thành viên của site. Nếu chưa có tài khoản, bạn có thể đăng ký bằng cách click vào đây
Đánh giá
Bạn đánh giá thế nào về file này?
Hãy click vào hình sao để đánh giá File
 

Trao Đổi Text Link

Cửa hàng bán giường inox | Mẫu giường sắt tại Đại Thành | Bán giường inox Đại Thành | Nơi bán giường sắt 1m2 | Bán giường gấp, giường xếp | Cửa hàng bàn inox chữ nhật | Bán ghế inox | Mua võng xếp | Mua bán tủ sắt | Xem bàn inox 304 | Cơ sở thu mua phế liệu Quang Tuấn | Vựa thu mua phế liệu sắt | Nơi bán giường sắt 1m4 | Địa chỉ nhận thu mua phế liệu inox | Cơ sở thu mua phế liệu đồng tại TPHCM | Cửa hàng giường sắt NTDT | Đ/c bán nệm cao su non NTDT | Cty sửa chữa biến tần tại TPHCM | Địa chỉ sửa chữa biến tần ABB tại TPHCM | Điểmsửa chữa biến tần Lenze giá rẻ TPHCM
KIẾN THỨC CƠ KHÍ CƠ BẢN

TIÊU CHUẨN CƠ KHÍ

KINH NGHIỆM CƠ KHÍ

PHẦN MỀM CƠ KHÍ


Nội dung được sưu tầm và tổng hợp từ Internet - Chúng tôi không chịu trách nhiệm về các vấn đề liên quan đến nội dung !!
 

HƯỚNG DẪN TẢI TÀI LIỆU LINK BÁO HỎNG

Có một số tài liệu khi các bạn bấm vào link tải sẽ hiện thông báo lỗi, nhưng thực ra link tải tài liệu vẫn hoạt động tốt. Các bạn tải link này bằng cách copy link và mở bằng new tab (hoặc bấm chuột phải và chọn "Mở liên kết ở cửa sổ mới") là có thể tải được tài liệu. Chúc các bạn thực hiện thành công. Cảm ơn các bạn đã quan tâm đến website.

Mọi thắc mắc hay ý kiến xin gửi vào mục Liên hệ hoặc gửi qua Email: thuvientlck@gmail.com
Hoặc: Fanpage FaceBook